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The theory of nonequilibrium potentials or quasipotentials is a physically 
motivated approach to small random perturbations of dynamical systems, 
leading to exponential estimates of invariant probabilities and mean first exit 
times. In the present article we develop the mathematical foundation of this 
theory for discrete-time systems, following and extending the work of Freidlin 
and Wentzell, and Kifer. We discuss strategies for calculating and estimating 
quasipotentials and show their application to one-dimensional S-unimodal 
maps. The method proves to be especially suited for describing the noise scaling 
behavior of invariant probabilities, e.g., for the map occurring as the limit of the 
Feigenbaum period-doubling sequence. We show that the method allows 
statements about the scaling behavior in the case of localized noise, too, which 
does not originally lie within the scope of the quasipotential formalism. 

KEY WORDS:  Dynamical systems; random perturbations; Feigenbaum 
attractor; noise scaling. 

1. I N T R O D U C T I O N  

In the study of random perturbations of dynamical systems one approach 
of special physical relevance is a generalization of a prototype situation one 
meets with in equilibrium thermodynamics (see, e.g., ref. 1): 

Let the macroscopic state of a thermodynamical system near equi- 
librium be specified by a k-tuple q = (ql ..... qk) of macroscopic variables. 
Phenomenologically, the change of these variables can be described by a 
first-order differential equation in time: 

d 
at q= f (q )  (1.1) 
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From the microscopic theory one can derive that the vector field 
f(q), called the drift, can be split up into a reversible part r(q) and an 
irreversible part d(q), and that the latter can be written as the gradient of 
a (coarse-grained) thermodynamic potential q~(q): 

d(q) -- - �89 (1.2) 

where the gradient has to be taken with respect to a certain metric tensor 
G which is built up from the so-called transport coefficients. The reversible 
part r(q) is in this metric orthogonal to d(q). 

The same thermodynamic potential ~(q) as introduced above has 
another meaning in the context of thermodynamic fluctuations of the 
macroscopic variables, which are described by an Ito stochastic differential 
equation 

d q = f ( q )  + ~ ~t (1.3) 

that emerges from (1.1) by adding a k-tuple ~ of mutually independent 
sources of Gaussian white noise with zero mean and covariance 
(~t~*) =Gb(t-t'). The parameter q is Boltzmann's constant here. The 
thermodynamic potential ~b(q) enters the equilibrium distribution w(q), 
which is an invariant probability density for the process defined by 
Eq. (1.3): 

with some prefactor Z. 

w(q)= Z exp ( -  ~(qq)) (1.4) 

During the past decades much progress has been achieved in the par- 
tial adaptation of the above results to systems for which a steady state far 
from equilibrium supersedes the equilibrium state, or--more abstractly--to 
general dynamical systems of the form (1.1) which are subject to random 
perturbations as described by (1.3). For a recent review see ref. 2. 

In some cases there exists a continuously differentiable function ~b(q) 
such that the drift splits up into two orthogonal parts, one of which 
satisfies Eq. (1.2). This function ~(q) is often referred to as a non- 
equilibrium potential. In general, the two parts of the drift do not have the 
interpretation of being the reversible and the irreversible part. What-- in  a 
weakend sense--remains is the statistical meaning of the nonequilibrium 
potential: For an invariant probability density of the process (1.3), 
Eq. (1.4) holds true not strictly, but as an asymptotic formula in the weak- 
noise limit, t / ~  0. 
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In other cases, Eq. (1.4) can still be used as an approximation of the 
invariant probability density in the weak-noise limit, but the non- 
equilibrium potential which enters is no longer continuously differentiable. 

Apart from its role in the asymptotic behavior of the stationary 
probability distribution, the nonequilibrium potential can be used to write 
mean escape times ( z )  from a certain region of the configuration space 
containing the steady state under the influence of the random perturbations 
in an Arrhenius-type relation: 

( z )  ~ exp ( - ~ )  (1.5) 

Here A~ is the minimal nonequilibrium potential difference between the 
steady state and the boundary of the region. Again, (1.5) holds true only 
as an asyptotic formula for t / ~  0. 

Independent of the evolution of this subject in a physical context, 
Wentzell and Freidlin (3) have elaborated a mathematical theory of the 
weak-noise limit of systems described by (1.3). A detailed account of their 
work can be found in ref. 4. A main result of this theory as well as of the 
heuristically based work in the physical literature is the formulation of an 
extremum principle which presents a tool for finding nonequilibrium poten- 
tials, or quasipotentials, as they are called by Wentzell and Freidlin. 

The extremum principle has successfully been applied in the search for 
nonequilibrium potentials of a number of physically motivated examples 
(e.g., refs. 5-7). However, all these examples have the common feature that 
the underlying deterministic systems (1.1) are quite simple from the 
dynamical point of view. Clearly, an extension of the applicability to 
systems with more complicated properties, such as fractal basin boundaries 
or strange attractors, is highly desirable. 

A reasonable approach to this problem is to begin with an investiga- 
tion of discrete-time systems which show those complicated properties. The 
Eq. (1.1) has to be replaced by a difference equation, Eq. (1.3) by a 
stochastic difference equation. Recently, there has been some work in this 
direction, both on the mathematical (8-1~ and on the physical (7"1M6) sides. 

The intuitive physical arguments have resulted, in one-dimensional 
systems, in working methods for determining the analogue of the non- 
equilibrium potential, which we choose here to call the quasipotential in 
accordance with Wentzell and Freidlin. Unfortunately, the nature of these 
arguments does not allow any rigorous statements on their validity, espe- 
cially for systems with complicated dynamics. At best one can appeal to 
numerical evidence a posteriori .  

Kifer (s) has presented a discrete-time version of the Wentzell-Freidlin 
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theory. However, in his work there is no contact with the physical applica- 
tions sketched above. 

In this article we choose an intermediate presentation: We start from 
rigorous results obtained with reference to the work of Wentzell, Freidlin, 
and Kifer. Generalizing ideas from the above-cited physical literature, we 
then systematically derive methods for determining quasipotentials. After 
that we give a first example of an application. Due to our starting point, 
the results of this application do not need (but of course can be tested by) 
numerical verification. 

We give a more detailed plan of what follows: 
In Section 2 we give the definitions necessary for and the theorems 

derived from the discrete-time version of the Wentzell-Freidlin theory. This 
deeply relies on the work of Kifer. (8) Our exposition is more specialized 
than Kifer's in that it is adjusted to the physical application in mind. On 
the other hand, it is more general in that we deal with the exit problem, 
and in that we weaken the fundamental condition for the theorems in order 
to be able to apply the theory to systems which are limits of a cascade of 
flip bifurcations. Section 2 does not contain any proof. The reader inter- 
ested in the mathematical details is referred to the Appendix. It supplies 
the information necessary to prove those of our statements which differ 
from ref. 8. We hope that even readers without acquaintance with the 
Wentzell-Freidlin theory might find the Appendix useful for getting an idea 
of the arguments involved. Readers who feel no need for mathematical 
rigor but are familiar with some of the physical work in this area may want 
to skip Section 2. They should then get used to our notation by reducing 
statement 0 5  in Section 3, setting D = M and r = 2, to something they 
know. 

Section 3 is a collection of implications of the general theory which are 
appropriate tools for an actual determination of quasipotentials. The most 
general of these implications are placed before those which need special 
assumptions on the system. 

In Section 4 we exemplify a simple application of the tools from 
Section 3. There we deal with random perturbations of S-unimodal maps on 
the interval. This class of maps representatively shows all the situations one 
can meet with in the determination of quasipotentials for one-dimensional 
maps. A case of special interest is the limit of period-doubling bifurcations. 
We show how the theory of quasipotentials is able" to give a lucid descrip- 
tion of the universal noise scaling behavior. 

Conclusions are given in Section 5. 
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2. BASIC DEFINIT IONS A N D  T H E O R E M S  

A discrete-time dynamical system is given by a continuous map 
F: M-~  M on some metric space (M, d). The theory of small random per- 
turbations of such a system deals with Markov sequences (X~(~o)),,=o,1.2 .... 
~ o ~  (~2 a measurable space of events), with one-step transition 
probabilities P~(x, F) = P~{~o c Q: XT(~o ) ~ F} (x ~ M, F a Borel set of M), 
which tend to 6-measures centered at F(x) as the small parameter ~/>0 
goes to zero. In the following we shall assume that P"(x, F) has density 
p"(x, y) with respect to a standard Borel measure on M. 

Our main interest lies in an asymptotic description of two objects with 
obvious physical importance: an invariant measure, which characterizes the 
stable distribution in the long-time behavior of the system, and the mean 
first exit time out of some domain D of M (e.g., a basin of attraction in 
the unperturbed system), which is observable both in simulations and 
experiments. Recall the following defining equations: for the invariant 
measure #", provided it exists, 

fMdg~(X) P"(x, F ) - - # " ( F )  (2.1) 

7; ~ for all Borel sets F; and for the mean first exit time ( D }x, when starting 
from x ~ D, 

(Z~)x = fo~a (inf{m > 0: X~m(~O) r D }) dP~(~) (2.2) 

Kifer's generalization (s) of the Wentzell-Freidlin approach ~4) starts 
with a large-deviation condition on the random perturbations, which we 
formulate here in a slightly specialized version: 

Assumption A. There exists a continuous function p(x, y)>10 on 
M x M, called the deviation rate, with the property that y ~ p(x, y) has a 
unique minimum p(x, F(x)) -- 0, such that uniformly in x and y e M, 

lira q log p"(x, y) = -p(x, y) 
r/~O 

We call such random perturbations p-noise. 
Although at the moment we do not need to specify the deviation 

rate, we refer to the best-known example of small random perturbations 
satisfying Assumption A. This is given by a stochastic difference equation 
similar to the stochastic differential equation (1.3), 

X~ +1 = F(X~) + ~ ~, (2.3) 



694 Harem and Graham 

where F is a real function and (~n) a sequence of independent real-valued 
Gaussian random numbers of unit variance. In this case the deviation rate 
is p(x, y)= �89  ]y-  F(x)l 2. 

Generalizing this example, we introduce for later use the deviation 
rates 

1 
pr(X, y ) = - -  [d(y, F(x) ) ]  r (2.4) 

r 

with r > 0 and not necessarily integer. 
The large-deviation condition allows an exponential estimate of the 

probability that a realization of the Markov sequence (Xi) stays close to a 
given sequence (qi) of length N in M. This probability for small ~/ is 
approximately exp{--SN[(qi)]/~} [for a precise formulation see (A.1)]. 
Here we have introduced the following quantity: 

S~[(qo)] := 0 

N-2 (2.5) 
SN[(q~)o<~i<N--1] := ~ P(q~,qi+l), N > 2  

i = 0  

which we call the action along the sequence (q~). 
It is then a natural question to ask for the least action along all 

sequences leading from one point x to another point y. We add the condi- 
tion that the sequences must not leave a domain D c M (/) compact), with 
the possible exception of the last point y. We split up the minimizing 
problem into two steps and define 

VD(x, y)=min{Su[(qi)]: qo=x6D; ql,..., qu-z~D; qN-1 -= Y} (2.6) 

and 

VD(x, y)= inf{ VDN(x, y): U~> 1} (2.7) 

VD(x, y) is continuous on D x M. In the next section we shall be concerned 
with the practical aspects of the minimizing procedure, but first we discuss 
the use of the function VD(x, y). 

Consider the following equivalence relation on D, implied by VD: 

D 
x ~ y iff V~(x,y)=VD(y,x)=O (2.8) 

The corresponding equivalence classes are denoted by [x] D. They are com- 
pact. Due to definition (2.8), the notations vD([x] v, y), V~ [y]D), and 
VD([X]D, [y]D) make sense, since, e.g., VD(x, y) has the same value for all 
equivalent x. We shall omit the superscript D if D = M  (M compact). 
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Among all equivalence classes we concentrate on those which are invariant 
under F: F ( [ x ]  D) = [x] ~ They are called basic classes. 

Since the action depends on the deviation rate p of the random pertur- 
bations, so does the notion of equivalence introduced above. Therefore we 
mention p in our notation wherever the results for different deviation rates 
are compared. Anyway, different deviation rates p may lead to the same 
basic classes. For  instance, if, for all x ~ M, 

pI~(x, y) = c(x) p(2~(x, y) 

with some bounded, positive function c, then p(l~_ and p(2~-basic classes are 
identical. This in particular means that introducing a position-dependent 
diffusion coefficient into the example of Eq. (2.3) does not change the basic 
classes. 

Since the basic classes are decisively involved in the formulation of the 
conditions under which the main theorems of this section hold true, it may 
be helpful to add some remarks concerning their meaning and their 
relation to longer known concepts: 

The points of basic classes are recurrent under the p-noisy map in the 
following sense: Starting from each point x of a basic class, there is a 
sequence of points leading back to x with arbitrarily small action. As a 
consequence, the Markov sequence (Xi), starting from x, stays near such 
a recurrent sequence with probability arbitrarily close to 1. 

This notion of recurrence is intermediate between the concepts of non- 
wandering and of chain recurrence (see, e.g., refs. 17 and 18). If x is a non- 
wandering point of F (i.e., for every neighborhood U of x and N >  0 there 
is n > N such that F n U ~  U r  ~ ) ,  then x is contained in some basic class. 
On the other hand, if x is member of a basic class, then x is chain recurrent 
[i.e., for every e > 0 there is a sequence (qo = x, ql ..... qx -1  = X) such that 
d(qj+~, F(qj))<~e for O < ~ j < N -  1]. 

The classification of the p-recurrent points into basic classes has its 
analogies in a spectral decomposition of the nonwandering set into maxi- 
mal transitive subsets (i.e., maximal subsets containing a dense orbit of F) 
and in the equivalence classes of chain recurrent points introduced by 
Ruelle ~9) in his study of localized random perturbations. 

In those systems where the maximal transitive subsets of a spectral 
decomposition of the nonwandering set coincide with Ruelle's classes, they 
coincide with the basic classes, too, which then do not depend on the 
deviation rate at all. 

For  a discussion of the r dependence of basic classes for the deviation 
rates (2.4), see ref. 9. Note that the parameter r can formally be used to 
mediate between nonwandering (r ~ 0) and chain recurrence (r ~ vo). 
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The basic classes can be divided up into stable and unstable classes. 
A basic class [x ]  D is called unstable if there is a point y r [x ]  ~ such that 
VD(x, y)  = O. 

The stable basic classes are in an informal sense the attractors of the 
noisy map, but to avoid confusion with the various existing definitions of 
attractors, we shall not use this name here. 

We are now ready to fix the assumption which allows us to find 
asymptotic estimates of invariant measures and mean exit times, as given 
by Theorem 1 and Theorem 2 below. The form of this assumption is 
induced by the method applied in the proofs, for which we give some 
details in the Appendix. 

Roughly speaking, this method is to study in place of the original 
Markov sequence (X]) a Markov chain on the set of small neighborhoods 
of basic classes, i.e., to pay attention only to those members of (X~) which 
are close to p-recurrent points. For  Markov chains on finite state spaces, 
easy results on invariant measures and mean exit times are available. 
Therefore, an obvious standard assumption of Freidtin and Wentzell (4) and 
of Kifer (8) is that there exists only a finite number of basic classes. 

As we shall see in Section 4.2, there are interesting situations where 
this assumption is not fulfilled, e.g., in the limit situation of the Feigen- 
baum period-doubling sequence, where besides a stable basic class, which 
is a Cantor set, there is an infinite number of unstable basic classes, namely 
the unstable periodic orbits. 

Therefore we state a weaker assumption which allows infinite families 
of unstable basic classes (see category 3 of Assumption B below), provided 
they satisfy three conditions: 

(a) An infinite number of the unstable classes can be absorbed in 
"coarse-grained" versions of stable classes. 

(b) The "coarse-grained" versions of the stable classes cannot be 
distinguished from the stable classes by the least actions from 
or to outside points. 

(c) In refinements of the "coarse-grained" stable classes the maximal 
least actions between inside points decrease sufficiently fast. 

Under these conditions, made precise below, all necessary estimates can be 
obtained from Markov chains on the finite number of "coarse-grained" 
basic classes. This is the basic idea carried through in the Appendix. 

The precise form of the assumption is as follows. 

A s s u m p t i o n  B. In D there are no basic classes other than those 
which are listed in the following three categories: 
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1. There is a finite number 2 of stable basic classes: Ko,..., K~_ i- 

2. There may exist a finite number ~c of unstable basic classes: 
K~.,..., K;. + K_ 1. 

3. For a number 21 of the stable basic classes, say for each v, 
0~<v<)q ,  there may be a family {K~J~,j=I, 2,...} of unstable 
basic classes with the following properties: 

(a) There is a decreasing sequence of compact sets g[J]  
K~I] ~ [23 K v ~ .... such that, for every j, F(K~ j]) c K~ .j], and K~ j] 
contains K~ as well as all K~ ~ for i > j. 

(b) If, for an arbitrary j, x ~ K ~  j], y e K ~  j], then 

V~ y )=  V~ Kv) and VD(y, x )=  V~ x) 

(c) For each v, 0~<v<21,  

lim j . p~j = O 
j ~ o o  

where 

P~i "= max{min p(x, y), min p(y, x): yep.~" ~ v [ j ]  } 
x e K  v x e K v  

Now we proceed to give the strict formulations of Eqs. (1.4) and (1.5). 
Setting D = M, we start with the result concerning the invariant measure, 
expressed in terms of a function q~(x) on M which we call the quasi- 
potential for the reasons indicated in the introduction. 

The quasipotential has to be calculated from least actions along 
sequences beginning at stable basic classes. The general defining formula 
for ~ (x )  involves some combinatorics, which can be handled most easily in 
graph-theoretic language. (4) We defer this formula to the Appendix 
[Eq. (A.11)], but mention here a special case: If there is only one stable 
basic class K0, the formula simply reduces to 

cI)(x) = V(Ko, x) (2.9) 

T h e o r e m  1. Consider a dynamical system on M (compact) 
perturbed by p-noise. Suppose that the basic classes in M satisfy Assump- 
tion B. Let w'7(x) be the density of an invariant measure #" and 05(x) the 
quasipotential defined by Eqs. (2.5)-(2.7) and (A.11). Then one has, for all 
x ~ M ,  

lim q log w'1(x) = - ~ ( x )  (2.10) 
r t ~ 0  
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The proof of this theorem is briefly sketched in the Appendix. 
The following theorem deals with the mean time of first exit from 

D c M .  It involves a quantity A ~ ,  which is, loosely speaking, the 
quasipotential depth in the region D, but may depend on the starting point 
x ~ D. Again we give the general definition of A ~  only in the Appendix 
[Eq. (A.13)]. For  the special case in which there is only one stable basic 
class K 0 in D and F(D)~_D one obtains 

D A~  x = min V~ y) (2.11) 
ye:cqD 

independent of x e D. 

T h e o r e m  2. Consider a dynamical system on M perturbed by 
p-noise, Suppose that the basic classes in a domain D c M (/) compact) 
satisfy Assumption B. Let ( r ~ ) x  be the mean time of first exit from D, 
when x e D  is the starting point, and Aq~ ~ the quantity defined by 
Eq. (A.13). Then one has 

lim t / l o g ( r ; ) x  = Aq~ (2.12) 
q ~ O  

For hints on the proof of this theorem, see the Appendix. 
We end this section with some remarks on how to establish contact 

with the continuous-time systems (1.3) mentioned in the introduction, 
where we put G equal to unity, for simplicity. 

One way to compare the results obtained here with the results for 
continuous time is purely formal: If we let M be a subset of R g, 
p ( x , y ) = p 2 ( x ,  y ) = l l y - F ( x ) ] 2  [cf.(2.4)],  and F ( x ) = x + c t f ( x )  with a 
real parameter ~, then, for e ~ 0, we can recover the results for the 
continuous-time systems (1.3) by isolating the lowest order in e. 

A second method is rather constructive: For  the deterministic system 
(1.1) there is Poincar6's standard method to reduce to a discrete-time 
system (see, e.g., 17). Let F '  be the flow of the vector field f (q) .  After the 
choice of an appropriate (k - 1 )-dimensional surface S c R k, this method 
considers the first return map Fe: 2 ; ~  S,  x~+F~ where O(x) is the 
first return time of x to 2;. 

The question arises, which noise has to be added to Fe when the per- 
turbed system (1.3) is under investigation? The use of p2-noise is in general 
a too simple choice. Rather, the results of Freidlin and Wentzell (4) suggest 
the following deviation rate: 

0 

pp(x, y) = inf inf 1- J0 [f(q(t)) - c)(t)l 2 dt (2.13) 
q(t) 2 

where the second infimum has to be taken over all absolutely continuous 
curves q( t ) on M with q( O ) = x e S,  q( O ) = y e S,  and q( t ) r 2; for 0 < t < 0. 
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3. E S T I M A T I N G  A N D  CALCULATING THE LEAST ACTION 

The application of the results from the previous section to any specific 
system requires, above all, the determination of the least action V~(x, y) 
between x eD and y eM.  In this section we collect some observations 
(O1-O7) which are useful in this task. 

We begin with two simple consequences of the definitions, which hold 
true under the general Assumption A, but shall later subject the deviation 
rates and systems to further assumptions. 

Since the set of all sequences from x to z via y is a subset of the set 
of all sequences from x to z, we obtain: 

O1 For  a l lx ,  y e D a n d z e M ,  

V~ z) <. V~ y) + V~ z) (3.1) 

According to the definition (2.5) and Assumption A, the action along 
orbits of the map F vanishes. Thus, the following condition is sufficient to 
show the vanishing of the least action. 

0 2  If in each neighborhood of F(x) (xED) there is a point x', and 
in each neighborhood of y e M  a point y' ,  such that y '  = F " ( x ' )  for some 
n ~> 0, and FJ(x ') e D for 0 ~< j < n, then 

VO(x, y) = 0 

This in particular implies that, if F acts transitively on an invariant set 
K ~ D, all points of K are equivalent. 

An immediate consequence of the first two observations is the fact that 
least actions do not increase along orbits of the deterministic map F. Due 
to (A.11) [or  (2.9)], this behavior is true for the quasipotential r  too. 

Henceforth we assume that the function y~--~p(x, y) introduced in 
Assumption A increases monotonically with d(y, F(x)). 

0 3  Consider D ' c D  with F(D')~D'. Then for all xeD'  and zCD' 
it follows that 

VD(x, z) >~ min VD(x, y) 
y E c~D ' 

If there is, furthermore, a subset B ' c  D such that DD'~ F(B'), then 

VD(x, z) >t min VD(y, z) 
y ~ B '  

The first statement is due to the fact that for any sequence (qi) from 
x to z one can find a sequence from x to the boundary of D' with smaller 
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. 

2. 

3. 
r > l  

or equal action: Let q~ be the last point of (q~) in D' and y' the point in 
~?D' nearest to F(qk). Since p(qk, y ')<.p(qk, qk+l), the action along 
(x, ql,..., qk, Y') does not exceed the action along (qi). 

In an analogous way, the second statement makes use of the points 
following qk for obtaining a lower bound of the action. 

By a similar argument one obtains the following result. 

0 4  For all x e D and z f~ F(D), it follows that 

VD(x,z)>~ rain VD(x, y) 
y e O(F(D)) 

Whereas so far we have just gathered some direct implications of the 
definitions from Section 2, we now want to investigate analytical methods 
for determining least actions. To this end, we confine ourselves to systems 
with: 

(M, d) a subset of Euclidean (~k  I'l) 

F continuously differentiable o n / )  

Deviation rate (cf. Assumption A) p~ as defined by (2.4), where 

If we were to deal with time-continuous systems, the problem of 
finding the least action would be a variational problem, which would 
be solved by standard methods known from classical mechanics. This 
procedure was pursued in refs. 5 and 20-22. 

In discrete-time systems the problem reduces to a minimization 
problem. The following observation and the correlated remarks systematize 
and generalize results of refs. 7, 10, and 12-16. 

05  Let (qi)o~i<N be a sequence such that q o = x E D ,  q i~D for all 
i < N -  1, and qN- 1 = Y E M. We call this sequence a minimal N-sequence 
if Su[(qi)]  o = VN(X, y). If for 0 < i < N - - 1  the transposed maps of the 

F T derivatives of F at qi, D I qi, are invertible, then a minimal N-sequence (qi) 
satisfies the following two-step recursion (0 < i <  N - 1 ) :  

f I q ~ - F ( q e - 1 ) l  }(r--2)/(r--1) 

qi +1 = F(q~) + [ [(DF] r ) - i  [ q i_  r(q~_l)]l 

x (Drlqr) -1 [ q i - F ( q i  ,)] (3.2) 

This two-step recursion can equivalently, and more clearly, be arranged by 
introducing an auxiliary sequence (P~)l<i<u, which obeys (1 ~< i <  N - 1 )  

Pl = Iql -- F(qo)[ r-  z [ q i -  F(qo)] 
(3.3) 

P~+l = (OFlqr) -1 Pi 
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Then (qi) satisfies the following recursion (0 ~< i < N -  1): 

q i + l  = F ( q i ) +  [p,+~l -(r 2)/(r l )pi+l  (3.4) 

Equation (3.2) follows from the condition that the gradient of the 
action along sequences of length N from x to y, considered as a function 
on D (N- 2), must vanish at the minimum. It can be interpreted as a discrete 
Lagrange equation. 

Equations (3.3) and (3.4) are the corresponding discrete Hamilton 
equations of a 2k-dimensional Hamiltonian system. 

If a minimal N-sequence (qi) from x to y or the related sequence (Pi) 
is known, the following formula for the corresponding action is useful: 

N - - I  
D VN(X, Y) = 1 2 [Pi] r/(r-- 1) 

r . 

= -  (DF -1Pl  (3.5) 
r i - 1  1 

Here we use the notational convention that 1-I~=~ ( ' " ) : =  1 for any 
integer n. 

Interpreting minimal sequences as projections of orbits of a 
Hamiltonian map on the (p = 0)-submanifold allows some useful conclu- 
sions. We here only make some brief remarks in this connection, since 
there is barely a difference (at least for r = 2 )  from the continuous-time 
situation which has been described in ref. 21. 

D The gradient of y~--~ VN(X, y) can be obtained in the Hamiitonian 
formulation as 

VN(X, Y) = P N - -  1 Vy D (3.6) 

Note that the dynamics of the Hamiltonian system (3.3), (3.4), 
restricted to the invariant (p=0)-p lane ,  retrieves the unperturbed 
dynamics of F. Thus, for instance, to each fixed point x of F the point (0, x) 
in the (p, q)-space is a fixed point of the Hamiltonian system. If x is stable 
for F, (0, x) is a saddle of the Hamiltonian system, the (p = 0)-plane being 
its stable manifold. For  r < 2 the unstable manifold is tangential to the 
(q = x)-plane-plane. For  r = 2 the unstable manifold is transverse to the 
stable manifold with an inclination determined by DFI r (see Fig. lb). For  
r > 2 the Hamiltonian map bears the deficience of nondifferentiability at 
p = 0 .  The unstable set of (0, x) asymptotically approaches the stable 
manifold near (0, x) in this case. 

For  the determination of V(x, y), where x is the above fixed point, one 
has to look for orbits of the Hamiltonian map starting arbitrarily close to 
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Fig. 1. (a) Least action V(x, y) (for r=  2) obtained as the lower envelope of the actions 
along minimal N-sequences starting near the stable fixed point x=0.5 of 
F(y) = y + 0.15 sin(2~zy). The discontinuities in the slope of the least action can be traced back 
to the heteroclinic tangles in (b) the unstable manifold of the point (0, x) in the (p, q)-plane 
for the Hamiltonian system defined by (3.3), (3.4), which accumulate near the unstable fixed 
point z = 0 of F. 

(0, x), therefore lying on the unstable set, and hitting the (q = y)-plane. 
Consider  the case where, besides the stable fixed point  x of F, there is an 
unstable fixed point  z (see Fig. la). The least action V(x, z) is obtained by 
a heteroelinic orbit  f rom (0, x) to (0, z). If  the heteroclinic points are trans- 
verse, they imply a heteroclinic tangle of the unstable set of (0, x) near 
(0, z) (see Fig. lb). In  this case there will be several intersections of the 
unstable set with the (q = y)-plane if y is close to z. The proper  choice 
among  these for evaluating the action is guided by the minimizing condi- 
t ion (2.7). Fo r  nearby  points Yl, Y2, the intersections so chosen with the 
planes q = yl  and q = Y2 need not  both  lie on the same lap of the unstable 
set; this jumping from lap to lap results in jumps in the gradient of V(x, y)  
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because of (3.6). The conclusion is that in general near unstable fixed 
points (and with analogous arguments near all types of unstable basic 
classes) discontinuities in the gradient of the quasipotential accumulate. 
Since the heteroclinic orbit still asymptotically approaches (0, z), (3.6) 
implies also that the gradient of the quasipotential tends to zero near z. 

For the sake of completeness we add the analogue of the Hamilton- 
Jacobi approach now: 

06  Define for some x ~ D the function D ~ y ~ ~b(y)= VD(x, y). On 
some regions of D, this function satisfies the following functional equation: 

~(y) - (~(F(y) + I(DFI yr)-, V~b(y)l-(r 2)/~r-,7 (DFI ;)--1 V~(J)) 

1 
+ _ I(DF I ry)-~ V~b(y)r r/~r-,~ = 0 (3.7) 

r 

Equation (3.7) can be derived in close analogy to the ordinary Hamilton- 
Jacobi equation by looking for an appropriate canonical transformation of 
the (p, q) coordinates of Eqs. (3.3), (3.4). A different derivation of Eq. (3.7) 
(for r = 2, k = 1 ) has been given in ref. 11. 

While for continuous-time systems the Hamilton-Jacobi equation is a 
major tool for the determination of quasipotentials (see, e.g., refs. 21-25), 
for discrete-time systems Eq. (3.7) is of little practical use, for two reasons: 
From a technical point of view, the solution of a functional equation like 
(3.7) is by far more problematic than the solution of a partial differential 
equation of the Hamilton-Jacobi type. Moreover, we had to make the 
restriction in 0 6  that Eq. (3.7) is only satisfied in certain regions of D. This 
is connected with the facts that, in general, there are discontinuities in V~b, 
and that-- in place of the time derivative in the Hamilton-Jacobi equa- 
tion--Eq. (3.7) contains a difference of the values of ~b at possibly distant 
points. There is no way to determine the regions of validity for Eq. (3.7) a 
priori. 

We now return to Eqs. (3.3), (3.4). Finding a minimal N-sequence 
between a given pair of points is a boundary value problem which in 
general can only be solved numerically (cf. the remarks at the end of this 
section). Therefore, an evaluation of (3.5) also requires numerical calcula- 
tion. There is, however, an important method of estimating V~(x,  y) if a 
minimal N-sequence from x to y is e-shadowed by the orbit of x. Recall 
that a sequence (qi)0~i<N is said to be e-shadowed by the orbit of x if 
Iq i -  U(x) l  <e  for O <~ i < N. 

The estimate is much easier to obtain in the one-dimensional case. We 
therefore restrict now consideration to k = 1. In addition, we assume that 
F is twice continuously differentiable on /5  c N. 

822/66/3-4-2 
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The property of z-shadowing then implies 

F(qi)-  F(r~(x))= [1 + C(e)] r'(qi)[q i -  Fi(x)] 

Writing 

[qi-Fi(x)]=qi-F(q~ 1)+F(qi  ~)-F(F i l(x)) 

we can iterate this estimate to obtain 

N-- I ( i = jN-- 2 ) 
[ q N _ l - - g  ~ I ( X ) ] : [ - 1 - ~ O ( e ) ]  ~ / xJ_ r ' ( q i ) [ q j - F ( q j _ l ) ]  

j : l  

With the aid of Eqs. (3.3) and (3.4), this leads 

Iqu 1--FN-I(X)I  ~- [1 +C(e)]  

N--I j--1 
x ~ ~ IF'(qk)l -r/(r-1) 

j= l  k=l 

As a combination of Eqs. (3.5) and (3.9), we 

to 
N--2 
1-I IF'(q,)l 
i~l 

(3.8) 

[P l  I 1/(r- 1) (3.9) 

obtain the following result, 
where instead of calculating the derivatives at the unknown points of the 
minimal sequence, we evaluate them at the easier-to-obtain nearby points 
of the deterministic orbit: 

07  If a minimal N-sequence from x to y is e-shadowed by the orbit 
of x, the following estimate holds true: 

[-N--I N--2 1 VD(x, y ) =  [1 +(9(5)] -1 [y__FU_l(x)lr ~ H IF'(rk(x))] r/(r-l) 1-r 
r - j ~ l  k = j  

(3.10) 

As a first application of 07,  we consider the quasipotential in the 
vicinity of a stable periodic orbit (period m) of a one-dimensional map F. 
Let this stable orbit be the only stable basic class of the system. The 
quasipotential in a point y near the point x of the periodic orbit has to be 
calculated as the least action along sequences from x to y [see (2.9)]. 
Obviously, a minimal (l.m + 1)-sequence (for each l =  1, 2,...) from x to/y 
is [y -x l - shadowed  by the periodic orbit (l revolutions). 

D 1(X, y) by Eq. (3.10) and notice that the action We estimate V lm + 

decreases with increasing I. After some calculation, we obtain in the limit 
l ~ ~ for sufficiently small l Y - xl 

q)(y)=C(x~ [y__ xl,.+ (f(ly__ xlr + l ) (3.11) 
r 
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where the following coeff• appears: 

1 - I(F") '  (X)] r/(r l) X r--1 (3.12) 
C{x)= Y2~=, I(Fm-J) ' EFJ(x)]I'/(r-I)J 

(Note that the j = m term of the sum in the denominator equals 1.) 
With very similar arguments one can show that the increase of the 

quasipotential toward a point z in an unstable basic class which is an 
unstable periodic orbit of period m (which generally shows accumulating 
points of nondifferentiability) can be enveloped by a curve of the form 

~(y)~ ~(z) -c(~) [ y -  zl" (3.13) 
r 

where 

( 1--I(Fm)'!z)] "/~'-'~ ~" 
c(z)=\ZT_ 1 I(U) (z)l "/~" 1)/ 

(3.14) 

Further application of the above observations will be demonstrated in 
Section 4. 

Although nonnumerical arguments are in the foreground of the 
present article, we stress that the detailed computation of quasipotentials 
even for simple systems can only be performed numerically. [Strictly 
speaking, the functions which are to be computed are the least actions 
VZ)(K~, x) for all stable basic classes K~. If there is more than one such 
class, the numerical results have to be used to take the minimum according 
to Eq. (A.11).] We sketch the two computational methods which are 
suggested by the above observations. 

The first way makes use of 05. The boundary value problem of finding 
a minimal N-sequence from a point of the stable class to a point outside 
of that stable class is by shooting method arguments turned into an initial 
value problem. The reeursion (3.3), (3.4) is repeatedly started with various 
suitable initial values--with the intention to reach all relevant points in M. 
The action along the computed sequences is obtained by Eq. (3.5). In 
general one will find several minimal sequences of different lengths which 
lead to the same point. According to (2.7), among the different values of 
the action which then result from Eq. (3.5), the lowest one has to be 
chosen. 

The most problematic detail of this method is the distribution of the 
initial values in order to obtain a sufficiently uniform distribution of the 
subsequent points. Besides, it is not a good idea to put qo on the stable 
basic class itself, because then the infimum in (2.7) is generally not attained 
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for any sequence of finite length Eas can be exemplified with the limiting 
procedure which was necessary to obtain (3.11)]. Instead, one should start 
with (Pl, ql) close to a point of the stable class on its unstable set under 
the Hamiltonian map (3.3), (3.4). 

The second, more general way, which was introduced by Reimann and 
Talkner, (~2'~3) is in the present context a direct application of the defini- 
tions and is related to O1. Based on 

V(Ku,z)= inf [V(Kv, y)+p(y,z)] (3.15) 
y ~ M  

one can, from a guess of y ~ V(Kv, y), iteratively obtain improvements by 
inserting the guess in the right-hand side of (3.15) and reading off the 
improvement on the left-hand side. The convergence of this procedure 
depends on starting with a reasonable guess. In the one-dimensional case 
with periodic orbits, Eq. (3.11) suggests itself as initial guess. 

The second method is free from the problem of a possibly 
inhomogeneous distribution of those points for which the quasipotential is 
known. On the other hand, the possibility of selected attention to special 
points or regions can be an advantage of the first method. 

4. Q U A S I P O T E N T I A L  OF S - U N I M O D A L  M A P S  

4.1. M a p s  w i t h  a Finite N u m b e r  of  Basic Classes 

We now apply the results from the previous section to a particularly 
well-known class cg of one-dimensional maps, the even, S-unimodal 
maps (the S indicates negative Schwarzian derivative) of the interval 
I =  [ - a ,  a]  c R. For  the classical results on these maps see ref. 26. The 
facts which we use here are concisely summarized in Chapter 2 of ref. 27. 

Recall that the members of the family of logistic maps 

1 + (1 + 4/~)1/2,] 
F , (x)  = 1 - # x  2 a =  ~ ] (4.1) 

belong to c~; varying the parameter ~, 0 </~ ~< 2, one can study examples 
for all the situations discussed below. 

Choosing M - - D  = I, we can use Theorem 1 for asymptotic statements 
about the stationary probability density for small random perturbations in 
terms of the quasipotential. Most of the various former investigations of 
the influence of noise on maps of the interval (see ref. 28 for a review of the 
early work) start with a definition of the noisy system by a stochastic 
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difference equation [see (2.3)]. In order to show the relevance of the 
present approach for those models, we give an example for a stochastic 
difference equation 

gn ~ + 1  = F(X~) + ~n(F(X,,)) (4.2) 

(Fe  ~)  that defines a Markov sequence on M - - I  satisfying Assumption A 
with deviation rate Pr. Here a state dependence of the random variables 
~(z) ,  z e L is introduced to prevent the noise from driving the system out 
of M=/,(11,29) The unmodified choice of Gaussian random variables as in 
(2.3) clearly would not work. However, if one restricts the values of ~(z )  
to the interval I(z):= [ -a - z ,  a-z], then (X~) does not escape from /' 
Thus we may choose the following probability density ~[z~(~) for ~(z):  

0[z)(~)={0 j#~)exp(-l~l~/rr / )  elsef~ ~e,( , )  (4.3) 

where the factor JV~) normalizes the density. With this choice, (4.2) defines 
a Markov sequence on I with the transition probability density 

p~(x, y)=.A/'~F(:,.~) exp ( ]Y-- F(x)]~.)rrl 

Since the factor ~4/'~F<~))" shows just an algebraic dependence on q, Assump- 
tion A holds true with pr(X, y) from (2.4). 

Note that a further possible application, which we do not take up 
here, would be to employ Theorem 2 with the choice M = N and D = I to 
estimate mean exit times when the noise is allowed to throw the system out 
of the interval L 

Theorem 2.4 of ref. 27, which is largely due to Jonker and Rand,(3~ 
gives a decomposition of the nonwandering set of any map in cg, which--in 
the present context of p~-noise--simultaneously supplies a specification of 
the basic classes of the map. The decomposition may be finite or infinite. 
We defer the latter case to the next subsection and assume until then that 
there is only a finite number ~c + 2 of basic classes (see Assumption B). As 
an implication of the assumed negative Schwarzian derivative, there is 
exactly one stable basic class: 2 =  1. Equation (2.9) applies. The above- 
mentioned decomposition theorem says that, apart from degenerate special 
cases, there are two alternatives. 

1. The stable class Ko is a stable periodic orbit of period m. The 
behavior of the quasipotential near K o follows from Eqs. (3.11), (3.12). 

2. The stable class Ko is a disjoint union of m closed intervals 
A j, 0 < j ~< m, such that F maps Aj homeomorphically onto Aj+I for j < m 
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and F "  is on A,~ conjugate to a tent map. Since F shows on K0 a sensitive 
dependence on initial conditions, this set is a strange attractor. 

In order to describe the behavior of the quasipotential (see Fig. 2) 
j+ m of the near the strange attractor, we arrange the endpoints x~: and x K 

intervals Aj such that F ( x ~ ) =  x~  +1 for 0 < i <  2m. Thus, for any outside 
i there is an orbit along endpoints shadowing a minimal point y near x K 

( i+  1)-sequence from Ko to y. We conclude by 0 7  from Section 3 that 

~ -  ]-I I f ' (x~) l  r/(r-1) [Y--XK[ r (4.4) 
~ b ( y ) ~ r  j i k=j 

There are two main types of unstable basic classes as well. 

1. The unstable class Kv (1 ~< v ~< x) is an unstable periodic orbit of 
period m. The quasipotential decreases on both sides of the periodic points 
with the behavior described by Eqs. (3.13), (3.14). 

2. The unstable class K~ (1 <<.v<~x) is a Cantor set on which F is 
conjugate to a transitive subshift of finite type. [Conjugacy to a subshift of 
finite type means that there exist a finite number, say l, of closed intervals 
I1,..., I t and a transition matrix (a/j)l~i,j~t whose coefficients are all 0 or 1 
such that for all x e Kv and all k >~ 0 

F k ( x ) ~ I i : : : ~ F k + l (  x ) ~  U Ij  
ai) ~ O 

Transitivity is guaranteed if for each pair (i ,j) ,  l<<,i, j<l,  there is an 
integer power of the transition matrix whose (i, j)-coefficient is greater 
than 0.] 

10-2 

10-4 

10-6 , I  . . . . . . . .  i , ~  . . . . .  , , r , ,  

-1.0 0.0 1.0 

I I 

Fig. 2. Quasipotential  ~b(x) for F~, with # = 1.4320... and r = 2. As in Fig. 1, ~ (x )  is the lower 
envelope of all plotted points. The attractor is shown below the abscissa and consists of two 
intervals in this case. 
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Instead of discussing the general situation, we give the simplest 
example here (31/ (see also ref. 32), which shows all arguments necessary to 
handle more complicated forms of unstable Cantor sets. We consider a 
map with a stable period-three orbit {xl ,  x2, x3 } (in increasing order) and 
a nearby unstable period-three orbit {Zl, z2, z3} (see Fig. 3a). We denote, 
for i = 1, 2, 3, by z~ ~ zi the point nearest to zi for which F3(z~) = zi (e.g., 
z; = -z2).  Consider the following decomposition of the interval [z'l, z;]  
into five subintervals: 

J l  = [Ztl ,  z l ) ,  I1 = EZl ,  - - z 2 ]  

J~ = ( - z ~ ,  z.,), h = Ez~, ~] 

J3  : ( z3 ,  z ; ]  

The unstable Cantor set is generated by repeatedly removing the preimages 
of J2 from the intervals 11 and 12. The transition matrix of this examples 
is (o I). 

F3(x) Xl x2 x 5 
1.0 

o o j"! 

-1"0~ . . . . . . . . . . . . . . . . . .  
z 1 -z 2 z 2 

r K' " "  

1 0 - 3 t  ~ 

10-4~ - / 

z3 

J 

! . . :  i . ~  . 
' . :~- .:'.. - ! 

. . . .  . . . . .  i 
- 1 . 0  0.0 1.0 

Fig. 3. (a) Graph of the threefold iteration of Fu with # = 1.7548.... Nearby the superstable 
orbit (xl ,  x2, x3) there is an unstable period-three orbit ( q ,  z2, z3). (b) Quasipotential r 
for F~,, r = 2 .  
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Note that xie Ji and 

(+)+ F Ji c Ji 
t 1 i = l  

Since ~(z'~) and ~(z~) both are not smaller than ~(z~), we conclude by the 
first part of 03 from Section 3 that 

q~(y) >/q~(ze) for all y ~ 11U 12 

On the other hand, we know by the Cantor set construction that each 
iterated preimage of J2 has an iterated preimage arbitrarily close to zi. By 
O1 and 02 from Section 3 we infer that 

q)(y)<~(ze) for all y ~ I 1 u J 2 ~ I  2 

Thus we obtain 

~(y)=q~(zi) for all yeI1uI2  (4.5) 

(see Fig. 3b). 
The increase of the quasipotential from x~ toward z~ can, in the vicinity 

of the unstable periodic orbit, be described as already discussed. 

4.2. The Case of  Per iod 2 ~ 

In the previous subsection we considered in c~ for which there is a 
finite number of basic classes. Now we study the remaining case with an 
infinite number of basic classes in the presence of pr-noise. The only stable 
basic class then is a Cantor set all gaps of which contain unstable basic 
classes. We confine ourselves to the most prominent example, where the 
unstable basic classes are periodic orbits with period 2 n for arbitrary n: the 
map occurring as the limit of the Feigenbaum period-doubling sequence 
(see, e.g., refs. 26 and 33). 

In the first step we describe the structure of this example and show 
that the unstable basic classes are of the third category of Assumption B. 

To be specific, we consider a function F with quadratic maximum 
which satisfies the Feigenbaum-Cvitanovic equation 

F ( x ) = - ~ F ( F ( e  ix)) (4.6) 

(e ~ 2.503) and with critical value F(0)= 1. 
We introduce the following intervals (n >/1): 

A~o.~ := [ - -~  ", ~ - - ]  

AI")'= U(A(o ")) for l~<2" 
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The length of A(o "), 2e -~, is larger than the lengths of all intervals AIn( The 
interval A~", ) is contained in A(o ">. 

Each interval of the ( n - 1 ) t h  generation can be divided into two 
intervals of the nth generation and, in between, a gap which is subdivided 
into two half gaps by a periodic point z~): 

f ~ ( n ) ) .  , , A ( n )  ( n )  A~'-I)=A}")uA~")u ~x, 1 ~ ~..-JZ~tl+2n-lt .-)Z~l+2n 1 

The periodic points in the gaps constitute unstable basic classes 

Let 

and 

K(o ~) = ~.~t;~(")" 1 ~<l~2 n-1 } 

2 n 

KEo ~] "= U A~ ~' (4.7) 
l = l  

K o : =  0 K0 En] (4.8) 
n 

The Cantor set Ko is the stable basic class. 
Apart from K o and the sets K(o ~), there is a further basic class: the 

unstable fixed point - a .  
In order to verify Assumption B, we have to check whether the infinite 

number of K(o ~) is related to Ko and the Ko e"] as described for the third 
category of that assumption. The property 3a is fulfilled by construction. 
For property 3b, we note that to each point of Ko e'] one can find an 
(iterated) preimage arbitrarily close to any point outside of Ko e~]. This 
implies, by 02  of Section 3, 

V(xoy)=O for all xCKo E~] and y ~ K o  cn] 

On the other hand, we have r (Ko c"]) = Ko e"] and 8Ko ~"] c g(Ko)= Ko, from 
which we conclude by O1 and the second part of 03  that 

V(y, x) = V(Ko, x) for all x r Ko ~"] and y e Ko c"1 

Finally we obtain by the definition (2.4) of pr-noise 

2 n 1 r 
p o ~ < _ ~ - ( -  ) 

f 

Hence, the property 3c, 

follows for our example. 

lim n-Po~=O 
n ~ o o  
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Now that we know Assumption B to hold true, we investigate the 
scaling behavior of the quasipotential in the gaps 

~ ( n )  

(0</~<2 "-~) of nth generation. Since the maximal values of the 
quasipotential in the gaps at the points zl ") ~ K{0 "~ do only depend on n--we 
introduce the notation ~(") for these values--it is sufficient to study the 

A(.) which are behavior of the quasipotential in the half gaps A {") :=  ,-2,, 
closest in the nth generation to the critical point. 

Consider a minimal N-sequence (q~) from the critical point qo = 0 to 
q,v-~ = x ~ A ( " )  for which N = m 2 " +  1 and which runs in m revolutions 
through all the half gaps A~ "), obviously e-shadowed by the critical orbit 
with e = 2e -(~- 1) 

By 0 7  from Section 3 we infer that 

VN(0, x)--[-1 + (9(e)] m [x-F2"(0)lr  [ 2~ 
F j 1 

2n--1 11-r 
1-I IF'(Fk(0))I r/(r-- I) 
k=j 

(4.9) 

The last factor of (4.9) has a well-known scaling behavior, which in 
ref. 33 was connected to the free ene rgy /~ ( /~ )  of the set K0. For the use 
of the thermodynamic formalism in connection with the scaling behavior of 
Cantor sets we refer to ref. 34. 

As can be shown by the same procedure as in the proof of 
Theorem 4.2 in ref. 33 (note the different sign convention introduced there 
in the definition of the free energy), the scaling of the factor in (4.9) is 

2, k=; IF'(Fk(0))l~/('-l)l lil'n ! log [j~l 2~ 1 

By length scaling near the critical point, on the other hand, we obtain 

lim 1 log Iz~)-i - f2"(0)l = --log cr (4.11 ) 
n ~ o o  n 

The result of Eqs.(4.9)-(4.11) is the scaling behavior of the 
quasipotential maxima in the nth gap of the Cantor set: 

lim 1 log q)~) = - r  g ( 1 - ~ r )  (4.12) n --~ oo n 

where we explicitly marked the dependence on r. 
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Fig. 4. 

r 

10-2 _ 

10-5 

10-8 
, I . . . . .  

-1.0 

:1 A! 
~' ! /i  

0,0 1.0 

I It III IJ Ill II 
Same as Fig. 2, for ~t~ = 1.4011..., the limit of the period-doubling sequence. 

Equation (4.12) can be exploited to obtain--for sufficiently high 
generations--the constant ratio of the quasipotential maxima in gaps of 
successive generations. 

The result for Gaussian noise, i.e., r = 2  (see Fig. 4), has been 
announced in ref. 16: 

~ ( n -  l) 

~(2n ) e x p [ 2 Y ( - 2 ) ]  ~ (6.619) 2 (4.13) 

This result involves the noise scaling constant ~c~6.619, which was 
introduced in refs. 35, 36. 

As a further application we discuss a procedure which has been used 
in refs. 28 and 37 to study noisy maps on the interval by computer 
experiments. In these experiments one iterates for a given noise strength a 
noisy map many times to obtain the stationary distribution, i.e., the density 
of the invariant measure. One then marks the regions of the interval where 
the stationary distribution exceeds a fixed threshold. This is repeated with 
varying noise strength. The noise strength is given in the experiments by 
the standard deviation a of the noise. This means that in the case of 
pr-noise we have the following relation to our noise strength q: 

a~t l  v" (4.14) 

The boundaries of the marked regions move along lines at(x) as a varies; 
these lines are the most characteristic features in the pictures obtained in 
the mentioned computer experiments. 

If the quasipotential ~r(x) is known, one can obtain at(x) as follows: 
For low noise, Theorem 1 states that the invariant density exceeds a given 
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threshold if ~br(x ) is smaller than a certain constant times ~/. The relation 
between the boundary a values and the quasipotential is, due to (4.14), 

(Tr(X) "~ [ ~ r ( X ) ]  1/r (4.15) 

A first consequence is that, for all r, ar(X) increases linearly near stable 
basic classes, since the quasipotential increases with power r. 

For the period-2 ~176 stable class we obtain from (4.12) and (4.15): 

~ ~exp  ~- ~ (4.16) 
r 

In ref. 37, a computer experiment is reported where the lines e(x) are 
shown for equidistributed noise, localized on an interval of length propor- 
tional to ~ (Fig. 2 of ref. 37). Though the theory of quasipotentials was 
originally not designed to treat noise not satisfying Assumption A, we can 
draw a conclusion on the scaling behavior in this case, too, by taking the 
limit r ~ oo. Equation (4.16) becomes 

(n-- 1) 
0"oo 

(~) e x p [ ~ ( -  1)] ~ 8.490 (4.17) 
O "  

Here we benefitted from a recent calculation of Y ( -  1) by Kov~cs. (3s) 
This is in excellent agreement with the value 8.477 resulting from the 

numerical data in ref. 37. 

5. C O N C L U S I O N S  

Theorems 1 and 2, formulated in Section 2, give a rigorous justifica- 
tion not only for various existing explicit and implicit applications of non- 
equilibrium-potential or quasipotential methods to noisy maps. The only 
condition to be fulfilled by the underlying deterministic system, Assump- 
tion A, is weak enough to admit systems with such complicated dynamical 
features as fractal basin boundaries, fraetal repellers, strange attractors, or 
Cantor attractors with nonopen basins of attraction. Our one-dimensional 
applications in Section 4 revealed some typical consequences of such com- 
plicated structures for the quasipotential: 

Fractal repellers bring about regions of constant quasipotential. In 
these regions, the stationary distribution does not depend exponentially on 
the noise strength. 

Fraetal attractors imply a certain scaling behavior of the quasi- 
potential in the attractor gaps. The scaling exponents characterizing this 
behavior describe by which factor noise has to be decreased to be able to 
resolve the next finer gap. An explicit example for such an application was 
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our treatment of the period-2 ~ attractor in Section 4.2. The quasipotential 
approach makes direct contact with the observable stationary distribution. 
This is advantageous as compared to the traditional approach (35"36) and 
has led to a new insight: Though the universal scaling factor ~c,,~6.619 
describes how to renormalize the noise strength independent of the form of 
the noise distribution, tc cannot be detected independent of the noise dis- 
tribution by the observation of stationary distributions. Rather, as we have 
shown, the scaling of the stationary distribution is described by tc only for 
(truncated) Gaussian noise, whereas, e.g., localized equidistributed noise 
leads to a universal scaling factor 8.490. 

The general theory exposed in Sections 2 and 3 and in the Appendix 
should be applicable to higher-dimensional systems, too. Among the 
aspects which cannot be studied in our example of S-unimodal maps but 
can occur in higher dimensions are strange attractors with fractal structure 
or systems with several coexisting attractors. The treatment of the latter 
problem can profit by the graph-theoretic formulation sketched in 
Appendix A. 

It makes sense to divide the observations from Section 3 into two 
groups: O1-O4 with topological tenor and 0 5 - 0 7  with analytical content. 
Applications of the former group to higher-dimensional systems can be 
carried out as obvious generalizations of our one-dimensional applications. 
We briefly sketch an example: Consider the map z ~ - - ~ F ~ ( z ) =  z - P a ( z ) /  

P ' a ( z )  on the complex plane, where P ~ ( z )  = z 3 + ( a  - 1 ) z - a with complex 
parameter a is a cubic polynomial. (39'4~ Fo describes Newton's algorithm 
for finding zeros of Pa. In the presence of pr-noise, the zeros of Pa are 
stable basic classes. For a = 1, the three third roots of unity are the only 
stable classes. A further basic class, the Julia set, which forms the boundary 
of the basins of attraction to the zeros, is unstable. This situation is 
analogous to the example concerning the second type of unstable basic 
class ("fractal repeller") in Section 4.1. In that example the basin of attrac- 
tion consisted of the gap intervals cut out of a Cantor set; now the basins 
of attraction consist of disjoint connected components of more complicated 
shape. By exactly the same combination of arguments as in the one-dimen- 
sional example, we can infer from O1, 02,  and the first part of 0 3  that the 
quasipotential must be constant not only on the Julia set, but even on all 
connected components of the attractor basins which do not contain the 
zeros. Only in the three immediate basins of attraction do quasipotential 
wells with minima in the zeros exist. For  a = 1, the three wells have equal 
depth. For  other values of a, the depth of quasipotential wells may be dif- 
ferent (and there may be more than three stable basic classes, namely stable 
periodic orbits), supplying a criterion of stability of the stable classes 
against pr-noise. 
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The analytical methods inspired by the second group of observations 
are much harder to transfer to higher dimensions. For two-dimensional 
hyperbolic attractors, however, an adaptation of 07  holds true (see ref. 16 
for the consequences). A treatment of the quasipotential for more general 
types of two-dimensional systems remains for future work. 

A P P E N D I X .  ON T H E  P R O O F  OF T H E O R E M S 1  A N D  2 

Theorems 1 and 2 are formed after the model of Theorems 4.3 and 5.3 
of Chapter 6 in ref. 4. But there are two new aspects here: We deal with 
maps instead of flows and we loosen the assumption about the structure of 
the basic classes by allowing the category 3 in Assumption B. 

The fundamental modifications that are necessary for maps in place of 
flows were presented in ref. 8. A proof of Theorem 1, restricted to dynami- 
cal systems with a finite number of basic classes, can be found there. 

Rather than giving the full proof of the theorems, we outline the main 
steps and mention technical details only in those places where alterations 
in the arguments of refs. 3, 4, and 8 are essential. 

The importance of the action (2.5) derives from the following estimate 
(which is Theorem 1.5.2 of ref. 8) for the probability of nearly realizing a 
given sequence: Given an arbitrary fl > 0 and ~r> 0, one has for sufficiently 
small ~ and tt 

exp ~<P~x{ max d(XT, qs)<6 } 
O<~j<~N 1 

(A.1) 

for each sequence (qi)o<~i<~N--1, N<<,N, starting in x. Thus, paths with 
small action are especially probable. 

On the other hand, one can show that it is improbable that the 
random sequence deviates much from the most probable paths 
(Corollary 1.5.2. of ref. 8): We define with D c M, /) compact, 

~r ..... qu 1) eDN l x F ( D ) : q o = x ; S u [ ( q i ) ] < - s }  

Then for any N, 3, fl > 0 there is 0 > 0 such that for all r/~< 4, N <~ .N, and 
s>~0, 

s-3) 
P"~{ inf max d(X~, qj)>~6} ~exp (A.2) 

(qi) e~r O<~j~N-- 1 -~ 
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The estimates (A.1) and (A.2) suggest for small q the replacement of 
the probability of a transition from x to a neighborhood of y in N -  1 steps 
by the probability of the most probable path: e -  v,,(x, y)/,. This replacement 
is in the spirit of Laplacian or saddle point approximations of integrals, 
and in the physical literature it is usually justified by such an approxima- 
tion in the Chapman-Kolmogorov equation for the transition probability. 

However, the heuristic arguments of the physical literature that lead to 
an asynaptotic expression for the stationary probability in terms of least 
actions involve a risky limit N--, ~ after the above replacement. This is the 
point where rigor is lost in those arguments. Precise conditions under 
which such an asymptotic expression is valid require a more subtle 
reasoning. 

The method of Freidlin and WentzeU takes advantage of the lucid 
results for invariant measures and mean exit times of finite Markov chains. 
The original Markov sequence on M related to the given perturbed 
dynamical system is boiled down to a Markov sequence on a finite union 
of well-chosen subsets of M. The choice of subsets will be described later, 
but we mention that the basic classes play an important role in this connec- 
tion. 

We now cite the lemmas of ref. 4, Chapter 6, Paragraph 3, which 
exploit the results for finite Markov chains. We start with some notational 
definitions. 

Let L be an alphabet with letters c~, fl, etc. Let l be the number of 
letters of the alphabet. A graph (i.e., a set of arrows between letters) 
consisting of l -  1 arrows is called a/~-graph if from every letter in L\{fl} 
there is exactly one path of arrows leading to ft. The set of all//-graphs is 
denoted by G(fl). The fl-graphs do not contain cycles of arrows. A graph 
without cycles and consisting of I -  2 arrows starting in L\{/~} which does 
not contain any path leading from ~ L \ { f l }  to fi is called an (~ ~f l ) -  
graph [the set of all such graphs is G(~ ~f l ) ] .  

We now consider a Markov sequence on a space U which is a finite 
disjoint union of l sets U~ (/~ ~ L). If there are numbers p ~  (~,/~ e L, ~ ~ fl) 
and a constant a >  1 such that the transition probabilities 
P(x, U~) (x ~ U~, ~ ~ fl) of the sequence satisfy the inequalities 

a lp~ <~ P(x, U~) <~ ap~ (A.3) 

then, according to ref. 4, Lemmas 3.2 and 3.4, the following estimates hold 
true, where, for a graph g, g(g) denotes the product [ I ( ~ a ) ~ g  P~a: 

For an invariant probability measure/7 of the Markov sequence one 
obtains 

a 2(t 1) Z~G~)  rt(g) <~fi(U~)<<a2(~_l ) Z~G(~) re(g) (A.4) 
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For the expectation value (Ov~)~ of the number of steps till the first 
entrance into U~ for sequences starting in x ~ Us (e r fi), one has 

a_4:-1 ~ g e  G(~ -~ p) g (g )  < ~ 4,-I Zg~  G(~ 4, fl) %(g) (A.5) 

In the case l =  2 the numerator has to be taken equal to 1. 
In the next step, we define, related to the sequence (X~) in M, to a set 

U c M with M\D c U, and to an integer k, a sequence (~I "'D'v'~)) in U for 
which we shall later prove an estimate of the type (A.3). 

The new sequence (.~) results from the old one by just keeping each 
kth member that hits Uc~ D, as long as the sequence does not leave D: 

(A.6) 
Y~i = X" if OUteD ' < OM\D, OUr~D,i. k i- k I 

Xi=X" if OUnD, i . k ) O M \ D ,  1 OM\,D, l 

where we have introduced the notation (for W c  M) 

0w, o = 0  

Ow,:=min{i>Ow, j_~:XTeW }, j > 0  

The following lemma guarantees the relation (A.3) for the transition 
probabilities P(x, U~) of (2~), provided a proper choice of U is made. 

Lemma. Consider a dynamical system on M perturbed by p-noise. 
Suppose that the basic classes Kp, 0 ~ p <)~ -I- tr and td(J) 0 ~< v < 21 
j = l, 2,..., in a domain D c M (/) compact) satisfy Assumption B. 

For  each g > 0 there exist s > 0 and integers J and k such that the 
following is true: 

For  each letter c~ of the alphabet 

t = {(Yj)] 0 ~ v  <)~1, O<~j~J} w {v: ")'1 ~ Y <,~"~- K} 

define a compact set K~ according to the following rules: 

K(v0) = K~ c:3 0 ~< v < 21 

K(vj)-=K~ j) 1 ~ j 4 J ,  0~<v<21 

K~ as already defined for 21 ~< v < 2 + 

Choose for all ~ e L pairwise disjoint neighborhoods Us c B,(Ks) (cD) of 
these compact sets. [Here B,(K~) denotes the set {x~M: d(x, Ks)<  s}.] 

Let U= U,~L Us w (M\D). Consider the sequence (21 "'D'v'~)) defined 
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by (A.6). For some integer k and sufficiently small t />0,  the transition 
probabilities satisfy 

and 

( ~  ( ~  exp V~c+)~ ~ ( x ,  M\D)~<exp V~c-X- (A.8) 
t/ q 

for x ~ U~. Here we introduced the following abbreviations: 

(A.9) 
D V~c= inf V~ y) 

y ~ M \ D  

Note that by 03  and 0 4  from Section 3, for monotone deviation rates, the 
last quantity can be written as 

D V~c = min VD(K~, y) 
y c  OD u F ( D ) \ D  

The statement is similar to Lemma 1.5.4 of ref. 8. We give here the 
proof of the estimate (A.7) [-(A.8) can be proved analogously] in order to 
exemplify the treatment of the new features: the restriction to a domain D 
and the new basic classes of the third category in Assumption B. 

ProoL (a) Upper estimate in (A.7): This estimate does not need 
a specific choice of J and k. Consider the realizations of (X,") for 

' 

which X'~=z~ Us, and 0u, 1 = ~, X~ ~ U~,, c~, ~L, r We have 
d(X'],M\Bs+6(KB,))>~6 for each 6 > 0 .  Now choose 6 and s such that 
B~(Kz,) c UZ, and 

Z 
sup{Ip(u, v ) -  p(u', v')l: d(u, u'), d(v, v') <~ s § 6 } <3--k 

u, v, u', v ' eD.  By the latter condition, we ensure that for each sequence 
(qi)o<i<lv starting in qo=zeU~,, ending in qg_leBs+~(K~,), and not 
leaving D, there is the following lower bound for the action: 
SN[(q~)] > v~DB, -- 2z/3k. Here we have used the definitions (2.5)-{2.8) and 
the condition 3b of Assumption B. We conclude from the above 
inequalities and (A.2) that 

P"~ {Ou, l = r <~ N; X:[ e Ut~, } 

~< P~ { inf max d(X~, qj) ~> ~ } ~< exp - 
(qi) e ,alz( vD~,B, -- 2z/3k)  0 ~< j < N 

for sufficiently small t/. 

822/66/3-4-3 
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On the other hand, one can show [Lemma 1.5.3(b) of ref. 8] that 

P~{Ou, >N}~<exp( D - v . , p , / ~ )  

for sufficiently large N and sufficiently small q, since M \  U does not contain 
any complete orbit of the unperturbed system starting in D. 

Summing up both contributions, we obtain 

p"tY~ eUB,}~< exp - l + e x p  
z ( ~  OU, 1 

for all z e U=,, provided that t/is sufficiently small. 
This directly proves (with ~ '=  a and f l '=  fl) the right inequality of 

(A.7) for k = 1. For arbitrary k, one obtains the upper estimate of (A.7) by 
inserting k - 1  intermediate steps, i.e., by ( k - 1 )  times applying the 
Chapman-Kolmogorov formula. The probability P(x, U~) is then 
expressed as k - 1  integrals over products of probabilities of the type 
P~{X~ou.1 ~ U~,} for which an upper bound can trivially be obtained using 
the above estimate. 

(b) Lower estimate in (A.7): Here we have to choose J and k 
depending on Z. The choice of k will be described below. Take J large such 
as to fulfill p~j< Z/61 for 0 ~< v < 21, where 1= ~: + 2 + ,/21 is the number of 
letters in the alphabet L; this is possible according to the condition 3c of 
Assumption B. 

Choose s and 6 so small that 6 < z/6l, Bza(K~)c U~ for all a ~ L, and 

Z sup { Ip(u, v)  - p (u' ,  v')[: d(u, u'), d(v, v') ~< s + a } < = 
O l  

. 

2. 

3. 
M \ D  

4. 

We are going to construct a sequence (Qi)o<~i<N with the following 
properties: 

Qo=x~U~,,QN I~K B 
Exactly k +  1 members of (Qi) are contained in U ~ L  B,~(K~,) 
All the other members of (Qi) a r e  not in U=~L Bs+a(K~), nor in 

SN [(Qi)] < V~ + Z 

If we succeed in this construction, the estimate is proved, since the above 
q properties imply that from X~ = x and maxo~<j<N d(X~,.Qj)< 6 it follows 
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that )~1 e U~ for the random sequence defined by (A.6). Therefore we have, 
according to (A.1), 

( ~  P(x, U~) t> P~{ max d(X~, Q~) < ~ } > exp - V~ + )~ 
o ~ j < , ' r  q 

The construction of the sequence (Q~) proceeds as follows: Let 2 be 
the point in K~ which is nearest to x e U~. By the choice of s + 6, we have 
p(x, F(~)) < Z/61. By definition and by condition 3b of Assumption B, there 
is a sequence (q~)o~<~ in D such that qo=F(2)eK~, q~_~eK~, and 

D S,[(q~)] < V~r ;(/6. Let qk, be the last point of this sequence which is in 
B,+6(K~). Let qj~eB~+6(K~) be the first point in 07~LB~+6(K~) of the 
subsequence (q~)~l<~<,,, and q~ be the last point of this subsequence in 
B,+6(K~:). Unless 7 :=f l ,  iterate this procedure [now with (q~)~;<~<,], 
defining 73, J3, and k3, and further until B,+6(K~) is reached for 7~=fl ,  
m<<. l. 

We know that 

m 1 
X Z SJ,+,-k,+l[(q~,,,qJ,+l)] < V~+g 

~ = 1  

Because of the choice of s + 6, we know even after replacing qk, by the 
nearest point in K~,, c~k ,, and qj,+~ by the nearest point in K~,+,, ~j,§ for all 
0 < z < m ,  that 

r n - - 1  
Z 

Sj,+l-k, + l [(~k,, qk,+ :,..., c~j,~)] < V ~ + ~  
t = l  

Now take for each t, 0 < ; < m ,  a sequence (p)'))o~j<.0> in B6(K~, ) 
which connects ~j, and qk, (qj~ := qo) such that S.~0[(p~'))] < z/2l, where the 
length n (') is bounded by some integer 1: that depends on ;g. This is possible 
if Kv, is a basic class because of Lemma 1.5.2 of ref. 8 (which is a simple 
consequence of the definitions and the compactness of basic classes) and 
remains valid if K~, is a set K~ Jl due to the choice of J. 

Now we specify k to be k =  ( l - 1 ) 1 :  + 1. The concatenation of the 
above segments leads to a sequence 

(x, ~j,, p]l) ..... P~)~ 2, qkl, qkl +1,..-, qJ2, p]2),..., c~j~) 

which has all the properties required for the sequence (Qi), except that the 
m : n 0 )  -k- number of its points in O~rB6(K~) is ~ + l = l + S Z , = l  1, which 

may be smaller than k + 1. In that case, we define (Qi) to be the above 
sequence, followed by the k - f c  points FS(0~m), s<~k-~, which are all 
contained in K~. | 
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It is possible to modify the proof in such a way that the lemma 
remains valid if we add a letter z to the alphabet L and define Kz = {z }, 
where z is an arbitrary point in D\U~L K~. 

Setting D = M, we can derive from the lemma and (A.4) estimates for 
the invariant measure /~, and then for the invariant measure /~', since by 
Proposition 1.5.3 of ref. 8, 

~ ' ( U ~ )  
~ ( u ~ )  = - -  

~ . ( u )  

Thus, for each Z > 0 and all x e M, one has, for all sufficiently small e 
and q, 

[ l ~ m i n [  min ~) V(Ko, Kp)+V(Kv, x)] #~(B~(x)) ~ exp -- ~ (V~Ls Lg~G,(~) ( ~  g 

- m i n  I min ~ V(K~,K;)I-T-Z} ] (A.10) 
vELs Lg~Gs(v) (a-~ p)G g 

Here we denote by L~ the alphabet {0, 1,..., 2 -  1 }, which enumerates the 
stable basic classes, and by G~ the corresponding graphs. Concerning the 
reasons which allow us to confine ourselves to the stable classes, we refer 
to Paragraph 4 in Chapter 6 of ref. 4. 

The relation (A.10) proves Theorem 1, and we can now give the 
general formula for the quasipotential: 

~ ( x ) = m i n  ~ min J V(K,,,Kp)+ V(K,x)] 
V~Ls LgcGs(v) ( a ~ p ) ~ g  

- m i n  ~ min Z V(K~,Kp)] (A.11) 
vELs L g~Gs(v) (a---~p)~ g 

Theorem 2 can be proved similarly to Theorem 5.3 in Chapter 6 of 
ref. 4. The connection between the mean exit time of (X]) and the sequence 
(X,) described by the above lemma is given by the following equation: 

j=o {co, ~ n:$j(~,) e o} 

Here Oy(eg), for a sequence realization which is characterized by co and 
starts in y s U c~ D, denotes the index of the next member of the sequence 
kept in the tilded sequence according to the rule (A.6), namely 
min { 0 ~: ~ D,~, 0M\D, 1 }" Its expectation value [which is the inner integral in 
(A.12)] is not smaller than 1, but [owing to Lemma 1.5.3(b) of ref. 8] does 
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not exceed exp(z'M) for any arbitrary Z' >0 ,  provided r/ is sufficiently 
small, and therefore does not influence the further estimates. From 
Eq. (A.12), just Y,j~o P"x{2 jeD}  remains to be estimated. This can be 
done using (A.5), since the above sum of probabilities is equal to the mean 
number of steps, (~a~\D)x, till the sequence (J~j) enters M\D .  We give the 
result: For every Z > 0 and sufficiently small t/, ( r ~ ) x  is between 

exp [17/~ min ~ V D 
~g~G~(C) ( a ~ p ) ~ g  ~rp 

min ~ VD(x, K~) + min 
v~ L,. L g~ Gc(v-~ C) (cr ~ p ) e  g 

provided the exponent is positive. Here the alphabet L, is enlarged by the 
letter C [see (A.9)]: L c = L, w {C}. (Concerning the reasons which allow 
us to confine ourselves to the stable classes, we refer to Paragraph 5 in 
Chapter 6 of ref. 4.) 

This proves Theorem 2, setting 

1~ D--min~VD(x,K~)+ min 2 A~b = g~a~(c)min (r VcrP v ~ L c k  g~Gc(vv'-~C) ( a ~ p ) e g  
Vap 

(A.13) 

or AqS~ =0 ,  i fEq.  (A.13) gives a negative value. 
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